MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2

Journal of molecular medicine (Berlin, Germany)(2016)

引用 76|浏览15
暂无评分
摘要
Silicosis is a fatal pulmonary fibrotic disorder characterized by accumulation of fibroblasts and myofibroblasts and deposition of extracellular matrix proteins. MiR-449a is a potential mediator of many cellular processes, including cell proliferation, differentiation, and apoptosis. We hypothesized that miR-449a may play a crucial role in the progression of pulmonary fibrogenesis. Here, we described miR-449a as a new autophagy-regulated miRNA. Importantly, miR-449a expression was significantly decreased in lung tissues of mice with silica treatment, and it was similarly expressed in NIH-3T3 and MRC-5 cells stimulated with TGF-β1. The activity of autophagy was inhibited in fibrotic lung tissues and TGF-β1-treated fibroblasts. To investigate the potential effect of miR-449a, we overexpressed miR-449a in mouse models and found that miR-449a significantly reduced both the distribution and severity of lung lesions induced by silica. In addition, miR-449a was observed to induce the activity of autophagy in vivo and in vitro. Notably, Bcl2 was identified as a target of miR-449a. Bcl2 levels were decreased in NIH-3T3 cells upon miR-449a overexpression. Indeed, the Bcl2 3′ UTR contained functional miR-449a responsive sequences. Furthermore, TGF-β1 was observed to increase the expression of Bcl2 via the MAPK/ERK pathway. These results suggest that miR-449a is an important regulator of autophagy, as well as a novel endogenous suppressor of pulmonary fibrosis. Key message MiR-449a expression was decreased in fibrotic lungs and activated fibroblasts. Autophagy was inhibited in fibrotic lung tissues and TGF-β1-treated fibroblasts. MiR-449a had an antifibrotic effect in silica-induced lung fibrosis. MiR-449a upregulated autophagic activity in vitro. Bcl2 is the autophagy-related target of miR-449a.
更多
查看译文
关键词
Autophagy,Bcl2,MiR-449a,Silicosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要