Late deviance detection in rats is reduced, while early deviance detection is augmented by the NMDA receptor antagonist MK-801.

Schizophrenia research(2017)

引用 33|浏览13
暂无评分
摘要
One of the most robust electrophysiological features of schizophrenia is reduced mismatch negativity, a component of the event related potential (ERP) induced by rare and unexpected stimuli in an otherwise regular pattern. Emerging evidence suggests that mismatch negativity (MMN) is not the only ERP index of deviance detection in the mammalian brain and that sensitivity to deviant sounds in a regular background can be observed at earlier latencies in both the human and rodent brain. Pharmacological studies in humans and rodents have previously found that MMN reductions similar to those seen in schizophrenia can be elicited by N-methyl-d-aspartate (NMDA) receptor antagonism, an observation in agreement with the hypothesised role of NMDA receptor hypofunction in schizophrenia pathogenesis. However, it is not known how NMDA receptor antagonism affects early deviance detection responses. Here, we show that NMDA antagonism impacts both early and late deviance detection responses. By recording EEG in awake, freely-moving rats in a drug-free condition and after varying doses of NMDA receptor antagonist MK-801, we found the hypothesised reduction of deviance detection for a late, negative potential (N55). However, the amplitude of an early component, P13, as well as deviance detection evident in the same component, were increased by NMDA receptor antagonism. These findings indicate that late deviance detection in rats is similar to human MMN, but the surprising effect of MK-801 in increasing ERP amplitudes as well as deviance detection at earlier latencies suggests that future studies in humans should examine ERPs over early latencies in schizophrenia and after NMDA antagonism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要