Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome.

Toxicological sciences : an official journal of the Society of Toxicology(2018)

引用 18|浏览24
暂无评分
摘要
Skin sensitization associated with the development of allergic contact dermatitis occurs via a number of specific key events at the cellular level. The molecular initiating event (MIE), the first in the sequence of these events, occurs after exposure of the skin to an electrophilic chemical, causing the irreversible haptenation of proteins within skin. Characterization of this MIE is a key step in elucidating the skin sensitization adverse outcome pathway and is essential to providing parameters for mathematical models to predict the capacity of a chemical to cause sensitization. As a first step to addressing this challenge, we have exposed complex protein lysates from a keratinocyte cell line and human skin tissue with a range of well characterized sensitizers, including dinitrochlorobenzene, 5-chloro-2-methylisothiazol-3-one, cinnamaldehyde, and the non (or weak) sensitizer 6-methyl coumarin. Using a novel stable isotope labeling approach combined with ion mobility-assisted data independent mass spectrometry (HDMSE), we have characterized the haptenome for these sensitizers. Although a significant proportion of highly abundant proteins were haptenated, we also observed the haptenation of low abundant proteins by all 3 of the chemical sensitizers tested, indicating that within a complex protein background, protein abundance is not the sole determinant driving haptenation, highlighting a relationship to tertiary protein structure and the amino acid specificity of these chemical sensitizers and sensitizer potency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要