The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors

Pharmacological Research(2016)

引用 58|浏览3
暂无评分
摘要
d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT1 and 5-HT2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5–20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT2A and D2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30–120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR1) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT1A, D2 and TAAR1 receptors.
更多
查看译文
关键词
LSD,In-vivo electrophysiology,Dopamine,Serotonin,TAAR1 receptor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要