Reply to: Response to limited surface impacts of the January 2021 sudden stratospheric warming

Nature Communications(2023)

引用 15|浏览16
暂无评分
摘要
Subseasonal weather prediction can reduce economic disruption and loss of life, especially during "windows of opportunity" when noteworthy events in the Earth system are followed by characteristic weather patterns. Sudden stratospheric warmings (SSWs), breakdowns of the winter stratospheric polar vortex, are one such event. They often precede warm temperatures in Northern Canada and cold, stormy weather throughout Europe and the United States - including the most recent SSW on January 5th, 2021. Here we assess the drivers of surface weather in the weeks following the SSW through initial condition "scrambling" experiments using the real-time CESM2(WACCM6) Earth system prediction framework. We find that the SSW itself had a limited impact, and that stratospheric polar vortex stretching and wave reflection had no discernible contribution to the record cold in North America in February. Instead, the tropospheric circulation and bidirectional coupling between the troposphere and stratosphere were dominant contributors to variability. Experimental forecasts show that a disturbed stratospheric polar vortex was not to blame for the deadly North American cold air outbreak in February 2021 - but it may have acted to sustain weather patterns and increase predictability in early 2021.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要