Event-Related Potential Differences In Children Supplemented With Long-Chain Polyunsaturated Fatty Acids During Infancy

DEVELOPMENTAL SCIENCE(2017)

引用 33|浏览12
暂无评分
摘要
Long-chain polyunsaturated fatty acids (LCPUFA) have been shown to be necessary for early retinal and brain development, but long-term cognitive benefits of LCPUFA in infancy have not been definitively established. The present study sought to determine whether LCPUFA supplementation during the first year of life would result in group differences in behavior and event-related potentials (ERPs) while performing a task requiring response inhibition (Go/No-Go) at 5.5 years of age. As newborns, 69 children were randomly assigned to infant formulas containing either no LCPUFA (control) or formula with 0.64% of total fatty acids as arachidonic acid (ARA; 20: 4n6) and various concentrations of docosahexaenoic acid (DHA; 22: 6n3) (0.32%, 0.64% or 0.96%) for the first 12 months of life. At 5.5 years of age, a task designed to test the ability to inhibit a prepotent response (Go/No-Go) was administered, yielding both event-related potentials (ERPs) and behavioral data. Behavioral measures did not differ between groups, although reaction times of supplemented children were marginally faster. Unsupplemented children had lower P2 amplitude than supplemented children to both Go and No-Go conditions. N2 amplitude was significantly higher on No-Go trials than Go trials, but only for supplemented children, resulting in a significant Group 9 Condition interaction. Topographical analysis of the ERPs revealed that the LCPUFA-supplemented group developed a novel period of synchronous activation (microstate) involving wider anterior brain activation around 200 ms; this microstate was not present in controls. These findings suggest that LCPUFA supplementation during the first 12 months of life exerts a developmental programming effect that is manifest in brain electrophysiology. A video abstract of this article can be viewed at: https://www.youtube.com/ watch?v=oM2leg4sevs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要