Oxyradical stress increases the biosynthesis of 2-arachidonoylglycerol: involvement of NADPH oxidase.

American journal of physiology. Cell physiology(2016)

引用 18|浏览16
暂无评分
摘要
NADPH oxidase (Nox)-derived oxyradicals contribute to atherosclerosis by oxidizing low-density lipoproteins (LDL), leading to their phagocytosis by vascular macrophages. Endocannabinoids, such as 2-arachidonoylglycerol (2-AG), might be an important link between oxidative stress and atherosclerosis. We hypothesized that 2-AG biosynthesis in macrophages is enhanced following ligation of oxidized LDL by scavenger receptors via a signal transduction pathway involving Nox-derived ROS that activates diacylglycerol lipase-β (DAGL-β), the 2-AG biosynthetic enzyme. To test this idea, we challenged macrophage cell lines and murine primary macrophages with a xanthine oxidase system or with nonphysiological and physiological Nox stimulants [phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA)]. Each stressor increased cellular superoxide levels and enhanced 2-AG biosynthetic activity in a Nox-dependent manner. Levels of cytosolic phospholipase A2-dependent AA metabolites (eicosanoids) in primary macrophages were also dependent on Nox-mediated ROS. In addition, 2-AG levels in DAGL-β-overexpressing COS7 cells were attenuated by inhibitors of Nox and DAGL-β. Furthermore, ROS induced by menadione (a redox cycling agent) or PMA could be partially attenuated by the cannabinoid 1/2 receptor agonist (WIN 55,212-2). Finally, cells that overexpress Nox2 components (Phox-COS7) synthesized larger amounts of 2-AG compared with the parental COS7 cells. Together, the results suggest a positive correlation between heightened oxygen radical flux and 2-AG biosynthesis in macrophage cell lines and primary macrophages. Because of the antioxidant and anti-inflammatory effects associated with 2-AG, the increased levels of this bioactive lipid might be an adaptive response to oxidative stress. Thus oxyradical stress may be counteracted by the enhanced endocannabinoid tone.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要