Resistance mutations of Pro197, Asp376 and Trp574 in the acetohydroxyacid synthase (AHAS) affect pigments, growths, and competitiveness of Descurainia sophia L.

Scientific reports(2017)

引用 11|浏览4
暂无评分
摘要
D. Sophia is one of the most problematic weed species infesting winter wheat in China, and has evolved high resistance to tribenuron-methyl. Amino acid substitutions at site of Pro197, Asp376 and Trp574 in acetohydroxyacid synthase (AHAS) were mainly responsible for D. sophia resistance to tribenuron-methyl. In this study, D. sophia plant individually homozygous for specific AHAS mutation (Pro197Leu, Pro197His, Pro197Ser, Pro197Thr, Asp376Glu and Trp574Leu) were generated. In addition, the effects of resistance mutations on pigments, growths and competitiveness of susceptible (S) and resistant (R) plants of D. sophia were investigated. The results indicated the R plants carrying Pro197Leu or Pro197His or Asp376Glu or Trp574Leu displayed stronger competitiveness than S plants. The adverse effects on R plants aggravated with the increase of R plants proportion, which made the R plants against domination the weed community in absent of herbicide selection. Therefore, these resistance mutation have no obvious adverse effects on the pigments (chlorophyll a, chlorophyll b and carotenoid), relative growth rates (RGR), leaf area ratio (LAR) and net assimilation rate (NAR) of R plants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要