Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.

APPLIED AND ENVIRONMENTAL MICROBIOLOGY(2017)

引用 11|浏览23
暂无评分
摘要
Cellulosomes are considered to be one of the most efficient systems for the degradation of plant cell wall polysaccharides. The central cellulosome component comprises a large, noncatalytic protein subunit called scaffoldin. Multiple saccharolytic enzymes are incorporated into the scaffoldins via specific high-affinity cohesin-dockerin interactions. Recently, the regulation of genes encoding certain cellulosomal components by multiple RNA polymerase alternative sigma(I) factors has been demonstrated in Clostridium (Ruminiclostridium) thermocellum. In the present report, we provide experimental evidence demonstrating that the C. thermocellum cipA gene, which encodes the primary cellulosomal scaffoldin, is regulated by several alternative sigma(I) factors and by the vegetative sigma(A) factor. Furthermore, we show that previously suggested transcriptional start sites (TSSs) of C. thermocellum cipA are actually posttranscriptional processed sites. By using comparative bioinformatic analysis, we have also identified highly conserved sigma I and sigma(A)-dependent promoters upstream of the primary scaffoldin-encoding genes of other clostridia, namely, Clostridium straminisolvens, Clostridium clariflavum, Acetivibrio cellulolyticus, and Clostridium sp. strain Bc-iso-3. Interestingly, a previously identified TSS of the primary scaffoldin CbpA gene of Clostridium cellulovorans matches the predicted sigma(I)-dependent promoter identified in the present work rather than the previously proposed sigma(A) promoter. With the exception of C. cellulovorans, both sigma(I) and sigma(A) promoters of primary scaffoldin genes are located more than 600 nucleotides upstream of the start codon, yielding long 5=untranslated regions (5'-TRs).Furthermore, these 5'-Rs have highly conserved stem-loop structures located near the start codon. We propose that these large 5'-UTRs may be involved in the regulation of both the primary scaffoldin and other cellulosomal components. IMPORTANCE Cellulosome-producing bacteria are among the most effective cellulolytic microorganisms known. This group of bacteria has biotechnological potential for the production of second-generation biofuels and other biocommodities from cellulosic wastes. The efficiency of cellulose hydrolysis is due to their cellulosomes, which arrange enzymes in close proximity on the cellulosic substrate, thereby increasing synergism among the catalytic domains. The backbone of these multienzyme nanomachines is the scaffoldin subunit, which has been the subject of study for many years. However, its genetic regulation is poorly understood. Hence, from basic and applied points of view, it is imperative to unravel the regulatory mechanisms of the scaffoldin genes. The understanding of these regulatory mechanisms can help to improve the performance of the industrially relevant strains of C. thermocellum and related cellulosome-producing bacteria en route to the consolidated bioprocessing of biomass.
更多
查看译文
关键词
5-UTR,Clostridium thermocellum,cellulosome,cipA,gene regulation,promoters,scaffoldin,sigma factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要