Coseismic Deformation Field of the Mw 7.3 12 November 2017 Sarpol-e Zahab (Iran) Earthquake: A Decoupling Horizon in the Northern Zagros Mountains Inferred from InSAR Observations.

REMOTE SENSING(2018)

引用 51|浏览21
暂无评分
摘要
The study of crustal deformation fields caused by earthquakes is important for a better understanding of seismic hazard and growth of geological structures in tectonically active areas. In this study, we present, using interferometric measurements constructed from Sentinel-1 Terrain Observation with Progressive Scan (TOPS) data and ALOS-2 ScanSAR, coseismic deformation and source model of the M-w 7.3, 12 November 2017 earthquake that hit northwest of the Zagros Mountains in the region between Iran-Iraq border. This was one of the strongest seismic events to hit this region in the past century, and it resulted in an uplift area of about 3500 km(2) between the High Zagros Fault (HZF) and Mountain Front Fault (MFF) with a maximum amount of 70 cm south of Miringe fault. A subsidence over an area of 1200 km(2) with a maximum amount of 35 cm occurred near Vanisar village at the hanging wall of the HZF. Bayesian inversion of interferometric synthetic aperture radar (InSAR) observations suggests a source model at a depth between 14 and 20 km that is consistent with the existence of a decoupling horizon southwest edge of the northern portion of the Zagros Mountains near the MFF. Moreover, we present evidence for a number of coseismically induced rockslides and landslides, the majority of them which occurred along or close to pre-existing faults, causing decorrelation in differential interferograms. Exploiting the offset-tracking technique, we estimated surface motion by up to 34 and 10 m in horizontal and vertical directions, respectively, due to lateral spreading on a big coseismic-induced landslide near Mela-Kabod. Field observations also revealed several zones of en echelon fractures and crack zones developed along a pre-existing fault passing through Qasr-e Shirin City, which exhibited secondary surface slip by up to 14 cm along its strike.
更多
查看译文
关键词
Sarpol-e Zahab earthquake,landslide,triggered slip,InSAR geodesy,burst overlap interferometry,offset tracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要