Parity Decision Tree Complexity is Greater Than Granularity.

Electronic Colloquium on Computational Complexity (ECCC)(2018)

引用 23|浏览44
暂无评分
摘要
We prove a new lower bound on the parity decision tree complexity $mathsf{D}_{oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $mathsf{D}_{oplus}(f)geq k+1$. This lower bound is an improvement of lower bounds through the sparsity of $f$ and through the degree of $f$ over $mathbb{F}_2$. Using our lower bound we determine the exact parity decision tree complexity of several important Boolean functions including majority and recursive majority. For majority the complexity is $n - mathsf{B}(n)+1$, where $mathsf{B}(n)$ is the number of ones in the binary representation of $n$. For recursive majority the complexity is $frac{n+1}{2}$. Finally, we provide an example of a function for which our lower bound is not tight. Our results imply new lower bound of $n - mathsf{B}(n)$ on the multiplicative complexity of majority.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要