Wide Activation for Efficient and Accurate Image Super-Resolution.

arXiv: Computer Vision and Pattern Recognition(2018)

引用 339|浏览89
暂无评分
摘要
In this report we demonstrate that with same parameters and computational budgets, models with wider features before ReLU activation have significantly better performance for single image super-resolution (SISR). The resulted SR residual network has a slim identity mapping pathway with wider ((2times) to (4times)) channels before activation in each residual block. To further widen activation ((6times) to (9times)) without computational overhead, we introduce linear low-rank convolution into SR networks and achieve even better accuracy-efficiency tradeoffs. In addition, compared with batch normalization or no normalization, we find training with weight normalization leads to better accuracy for deep super-resolution networks. Our proposed SR network textit{WDSR} achieves better results on large-scale DIV2K image super-resolution benchmark in terms of PSNR with same or lower computational complexity. Based on WDSR, our method also won 1st places in NTIRE 2018 Challenge on Single Image Super-Resolution in all three realistic tracks. Experiments and ablation studies support the importance of wide activation for image super-resolution. Code is released at: this https URL
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要