Diagnostics Of Trains With Semantic Diagnostics Rules

INDUCTIVE LOGIC PROGRAMMING (ILP 2018)(2018)

引用 7|浏览184
暂无评分
摘要
Industry today employs rule-based diagnostic systems to minimize the maintenance cost and downtime of equipment. Rules are typically used to process signals from sensors installed in equipment by filtering, aggregating, and combining sequences of time-stamped measurements recorded by the sensors. Such rules are often data-dependent in the sense that they rely on specific characteristics of individual sensors and equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers especially when the rules require domain knowledge. In this work we propose an approach to address these problems by relying on the well-known Ontology-Based Data Access approach: we propose to use ontologies to mediate the sensor signals and the rules. To this end, we propose a semantic rule language, SDRL, where signals are first class citizens. Our language offers a balance of expressive power, usability, and efficiency: it captures most of Siemens data-driven diagnostic rules, significantly simplifies authoring of diagnostic tasks, and allows to efficiently rewrite semantic rules from ontologies to data and execute over data. We implemented our approach in a semantic diagnostic system and evaluated it. For evaluation we developed a use case of rail systems at Siemens and conducted experiments to demonstrate both usability and efficiency of our solution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要