Evolving Multimodal Robot Behavior via Many Stepping Stones with the Combinatorial Multiobjective Evolutionary Algorithm

Evolutionary Computation(2022)

引用 21|浏览152
暂无评分
摘要
An important challenge in reinforcement learning is to solve multimodal problems, where agents have to act in qualitatively different ways depending on the circumstances. Because multimodal problems are often too difficult to solve directly, it is often helpful to define a curriculum, which is an ordered set of subtasks that can serve as the stepping stones for solving the overall problem. Unfortunately, choosing an effective ordering for these subtasks is difficult, and a poor ordering can reduce the performance of the learning process. Here, we provide a thorough introduction and investigation of the Combinatorial Multiobjective Evolutionary Algorithm (CMOEA), which allows all combinations of subtasks to be explored simultaneously. We compare CMOEA against three algorithms that can similarly optimize on multiple subtasks simultaneously: NSGA-II, NSGA-III, and ε-Lexicase Selection. The algorithms are tested on a function-optimization problem with two subtasks, a simulated multimodal robot locomotion problem with six subtasks, and a simulated robot maze-navigation problem where a hundred random mazes are treated as subtasks. On these problems, CMOEA either outperforms or is competitive with the controls. As a separate contribution, we show that adding a linear combination over all objectives can improve the ability of the control algorithms to solve these multimodal problems. Lastly, we show that CMOEA can leverage auxiliary objectives more effectively than the controls on the multimodal locomotion task. In general, our experiments suggest that CMOEA is a promising algorithm for solving multimodal problems.
更多
查看译文
关键词
Many-objective optimization,evolutionary multiobjective optimization,multimodal problems,evolutionary algorithms,robotics,stepping stones
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要