Preparation and characterization of microporous sodium poly(aspartic acid) nanofibrous hydrogel

Journal of Porous Materials(2016)

引用 15|浏览3
暂无评分
摘要
A novel biodegradable sodium poly(aspartic acid) (PASP) hydrogel with microporous structure was manufactured using electrospun polysuccinimide (PSI) nanofibers. PSI is the intermediate of sodium PASP and could be electospun into nanofibers easily. Firstly, PSI nanofibers were prepared from PSI/N, N-dimethylformamide solution. Then the PSI nanofibrous mats were crosslinked and hydrolyzed to obtain biodegradable microporous sodium PASP nanofibrous hydrogels. The chemical structures, morphologies and pore sizes of PSI nanofibrous mats and microporous sodium PASP nanofibrous hydrogels were investigated. Moreover, the properties of PSI electrospinning solutions, and the swelling ratio and biodegradability of sodium PASP hydrogels were also examined. The results showed that the swelling ratio of microporous sodium PASP nanofibrous hydrogels achieved to 21.0–24.3 g/g and were obviously higher than that of the sodium PASP casting film, reporting a swelling ratio of only 4.6 g/g. When the microporous sodium PASP nanofibrous hydrogel was immersed in water, it exhibited quick absorption and morphological robustness. The microporous sodium PASP nanofibrous hydrogel showed 83 wt% weight loss after 7 days of trypsin catalyzed biodegradation, and the SEM analysis demonstrated the significant morphology change of the microporous sodium PASP nanofibrous hydrogel during the biodegradation.
更多
查看译文
关键词
Microporous hydrogel,Polysuccinimide nanofibers,Poly(aspartic acid),Electrospinning,Biodegradable
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要