Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm with the Interleaved Multi-start Scheme.

Swarm and Evolutionary Computation(2018)

引用 27|浏览14
暂无评分
摘要
The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-GOMEA requires its two parameters, namely the population size and the number of clusters, to be set properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner. In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent performance of the original MO-GOMEA.
更多
查看译文
关键词
Evolutionary algorithms,Multi-objective optimization,Linkage learning,Optimal mixing,Parameter settings,Scalability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要