Self-Controlled Jamming Resilient Design Using Physical Layer Secret Keys.

arXiv: Information Theory(2018)

引用 24|浏览27
暂无评分
摘要
Direct-sequence spread spectrum (DSSS) has been recognized as an effective jamming resilient technique. However, the effectiveness of DSSS relies on the use of either pre-shared unique secret keys or a bank of public codes, which can be prohibitively expensive in future large-scale decentralized wireless networks, e.g., the Internet of Things. To tackle this problem, in this work we develop a new framework for self-controlled physical-layer-security-based spreading sequence generation. Specifically, we exploit the shared randomness inherent in wireless channels to generate and refresh secret seeds at each communicating node using shared randomness extraction, entropy pooling and random seed generation. The generated secret seeds are then utilized to perform DSSS. To evaluate the performance, we implement our framework on software defined radio platform and examine the successful transmission probability of the system under various models of broadband jamming along with an special case wherein adversary is assumed to have leaked information on key rate. Both our analysis and real-world measurements confirm that communication systems based on our framework can achieve jamming-resilient communications without requiring pre-shared sequences.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要