Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials

Biomaterials(2017)

引用 10|浏览11
暂无评分
摘要
Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants.
更多
查看译文
关键词
Fibrin biomaterial,Aprotinin,Human Kunitz-type protease inhibitor,Plasmin,Protein engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要