Informed Asymptotically Near-Optimal Planning for Field Robots with Dynamics.

FSR(2018)

引用 31|浏览57
暂无评分
摘要
Recent progress in sampling-based planning has provided performance guarantees in terms of optimizing trajectory cost even in the presence of significant dynamics. The STABLE_SPARSE_RRT (SST) algorithm has these desirable path quality properties and achieves computational efficiency by maintaining a sparse set of state-space samples. The current paper focuses on field robotics, where workspace information can be used to effectively guide the search process of a planner. In particular, the computational performance of SST is improved by utilizing appropriate heuristics. The workspace information guides the exploration process of the planner and focuses it on the useful subset of the state space. The resulting Informed- SST is evaluated in scenarios involving either ground vehicles or quadrotors. This includes testing for a physically-simulated vehicle over uneven terrain, which is a computationally expensive planning problem.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要