Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis

AAAI'18/IAAI'18/EAAI'18: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence(2017)

引用 15|浏览77
暂无评分
摘要
Spectral Clustering (SC) is a widely used data clustering method which first learns a low-dimensional embedding $U$ of data by computing the eigenvectors of the normalized Laplacian matrix, and then performs k-means on $U^\top$ to get the final clustering result. The Sparse Spectral Clustering (SSC) method extends SC with a sparse regularization on $UU^\top$ by using the block diagonal structure prior of $UU^\top$ in the ideal case. However, encouraging $UU^\top$ to be sparse leads to a heavily nonconvex problem which is challenging to solve and the work (Lu, Yan, and Lin 2016) proposes a convex relaxation in the pursuit of this aim indirectly. However, the convex relaxation generally leads to a loose approximation and the quality of the solution is not clear. This work instead considers to solve the nonconvex formulation of SSC which directly encourages $UU^\top$ to be sparse. We propose an efficient Alternating Direction Method of Multipliers (ADMM) to solve the nonconvex SSC and provide the convergence guarantee. In particular, we prove that the sequences generated by ADMM always exist a limit point and any limit point is a stationary point. Our analysis does not impose any assumptions on the iterates and thus is practical. Our proposed ADMM for nonconvex problems allows the stepsize to be increasing but upper bounded, and this makes it very efficient in practice. Experimental analysis on several real data sets verifies the effectiveness of our method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要