Adaptive kNN using Expected Accuracy for Classification of Geo-Spatial Data.

SAC 2018: Symposium on Applied Computing Pau France April, 2018(2018)

引用 24|浏览77
暂无评分
摘要
The k-Nearest Neighbor (kNN) classification approach is conceptually simple - yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e. g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each instance (point) to be classified, such that the expected accuracy of classification is maximized. We define the expected accuracy as the accuracy of a set of structurally similar observations. An arbitrary similarity function can be used to find these observations. We introduce and evaluate different similarity functions. For the evaluation, we use five different classification tasks based on geo-spatial data. Each classification task consists of (tens of) thousands of items. We demonstrate, that the presented expected accuracy measures can be a good estimator for kNN performance, and the proposed adaptive kNN classifier outperforms common kNN and previously introduced adaptive kNN algorithms. Also, we show that the range of considered k can be significantly reduced to speed up the algorithm without negative influence on classification accuracy.
更多
查看译文
关键词
Classification, kNN, Geo-spatial Data, Adaptive Algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要