Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space.

Lecture Notes in Artificial Intelligence(2017)

引用 7|浏览22
暂无评分
摘要
We present a new approach for learning a sequence regression function, i.e., a mapping from sequential observations to a numeric score. Our learning algorithm employs coordinate gradient descent with Gauss-Southwell optimization in the feature space of all subsequences. We give a tight upper bound for the coordinate wise gradients of squared error loss which enables efficient Gauss-Southwell selection. The proposed bound is built by separating the positive and the negative gradients of the loss function and exploits the structure of the feature space. Extensive experiments on simulated as well as real-world sequence regression benchmarks show that the bound is effective and our proposed learning algorithm is efficient and accurate. The resulting linear regression model provides the user with a list of the most predictive features selected during the learning stage, adding to the interpretability of the method. Code and data related to this chapter are available at: https://github.com/svgsponer/SqLoss.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要