A (non-)hydrostatic free-surface numerical model for two-layer flows.

Applied Mathematics and Computation(2018)

引用 4|浏览2
暂无评分
摘要
A semi-implicit (non-)hydrostatic free-surface numerical model for two layer flows is derived from the NavierStokes equations by applying kinematic boundary conditions at moving interfaces and by decomposing the pressure into the hydrostatic and the hydrodynamic part. When the latter is ignored, the algorithm conveniently transforms into a solver for a hydrostatic flow. In addition, when the vertical grid spacing is larger than the layer depths, the algorithm naturally degenerates into a solver for the shallow water equations. In this paper, the presented numerical model is developed for the horizontal centrifugal casting, a metallurgical process, in which a liquid metal is poured into a horizontally rotating cylindrical mold. The centrifugal force pushes the liquid metal toward the mold wall resulting in a formation of a sleeve with a uniform thickness. The mold gradually extracts the sensible and the latent heat from the sleeve, which eventually becomes solid. Often a second layer of another material is introduced during the solidification of the first layer. The proposed free-surface model is therefore coupled with the heat advection-diffusion equation with a stiff latent heat source term representing the solidification. The numerical results show a good agreement with measurements of temperatures performed in the plant. A validation of the proposed model is also provided with the help of using other numerical techniques such as the approximate Riemann solver for the two layer shallow water equations and the volume of fluid method.
更多
查看译文
关键词
advection-diffusion equation, centrifugal casting, free-surface model, numerical modeling, shallow water equations, solidification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要