Intestinal Inflammation-Mediated Clearance of Amebic Parasites Is Dependent on IFN-γ.

JOURNAL OF IMMUNOLOGY(2018)

引用 5|浏览12
暂无评分
摘要
Intestinal amebiasis is a major cause of diarrhea. However, research on host-amebae interactions has been hampered owing to a lack of appropriate animal models. Recently, a mouse model of intestinal amebiasis was established, and using it, we reported that Entamoeba moshkovskii colonized the intestine in a manner similar to that of the pathogenic Entamoeba histolytica. In this study, we evaluated the protective mechanisms present against amebae using this model. CBA/J mice infected with E. histolytica had a persistent infection without apparent symptoms. In contrast, E. moshkovskii-infected mice rapidly expelled the ameba, which was associated with weight loss, diarrhea, and intestinal damage characterized by apoptosis of intestinal epithelial cells (IECs). Expression of NKG2D on intestinal intraepithelial lymphocytes (IELs) and IFN-gamma-producing cells in Peyer's patches were significantly induced after infection with E. moshkovskii but not with E. histolytica. IFN-gamma-deficient mice infected with E. moshkovskii showed no obvious symptoms. Notably, none of these mice expelled E. moshkovskii, indicating that IFN-gamma is responsible not only for intestinal symptoms but also for the expulsion of amebae. Furthermore, apoptosis of IECs and expression of NKG2D on IELs observed in E. moshkovskii-infected mice did not occur in the absence of IFN-gamma. In vivo blocking of NKG2D in mice infected with E. moshkovskii enabled ameba to survive longer and remarkably reduced apoptotic IECs. Our results clearly demonstrate a novel protective mechanism exerted by IFN-gamma against intestinal amebae, including induction of cytotoxicity of IELs toward IECs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要