RNA sequencing and analysis of three Lupinus nodulomes provide new insights into specific host-symbiont relationships with compatible and incompatible Bradyrhizobium strains

J. Keller,J. Imperial, T. Ruiz-Argüeso,K. Privet,O. Lima, S. Michon-Coudouel, M. Biget,A. Salmon, A. Aïnouche,F. Cabello-Hurtado

Plant Science(2018)

引用 10|浏览22
暂无评分
摘要
Nitrogen fixation in the legume root-nodule symbiosis has a critical importance in natural and agricultural ecosystems and depends on the proper choice of the symbiotic partners. However, the genetic determinism of symbiotic specificity remains unclear. To study this process, we inoculated three Lupinus species (L. albus, L. luteus, L. mariae-josephae), belonging to the under-investigated tribe of Genistoids, with two Bradyrhizobium strains (B. japonicum, B. valentinum) presenting contrasted degrees of symbiotic specificity depending on the host. We produced the first transcriptomes (RNA-Seq) from lupine nodules in a context of symbiotic specificity. For each lupine species, we compared gene expression between functional and non-functional interactions and determined differentially expressed (DE) genes. This revealed that L. luteus and L. mariae-josephae (nodulated by only one of the Bradyrhizobium strains) specific nodulomes were richest in DE genes than L. albus (nodulation with both microsymbionts, but non-functional with B. valentinum) and share a higher number of these genes between them than with L. albus. In addition, a functional analysis of DE genes highlighted the central role of the genetic pathways controlling infection and nodule organogenesis, hormones, secondary, carbon and nitrogen metabolisms, as well as the implication of plant defence in response to compatible or incompatible Bradyrhizobium strains.
更多
查看译文
关键词
Lupines,Symbiotic specificity,RNA-Seq,Nodulation phenotypes,Functional markers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要