Improving post-detonation energetics residues estimations for the Life Cycle Environmental Assessment process for munitions

Chemosphere(2018)

引用 8|浏览20
暂无评分
摘要
The Life Cycle Environmental Assessment (LCEA) process for military munitions tracks possible environmental impacts incurred during all phases of the life of a munition. The greatest energetics-based emphasis in the current LCEA process is on manufacturing. A review of recent LCEAs indicates that energetics deposition on ranges from detonations and disposal during training is only peripherally examined through assessment of combustion products derived from closed-chamber testing or models. These assessments rarely report any measurable energetic residues. Field-testing of munitions for energetics residues deposition has demonstrated that over 30% of some energetic compounds remain after detonation, which conflicts with the LCEA findings. A study was conducted in the open environment to determine levels of energetics residue deposition and if combustion product results can be correlated with empirical deposition results. Energetics residues deposition, post-detonation combustion products, and fine aerosolized energetics particles following open-air detonation of blocks of Composition C4 (510 g RDX/block) were quantified. The deposited residues amounted to 3.6 mg of energetic per block of C4, or less than 0.001% of the original energetics. Aerial emissions of energetics were about 7% of the amount of deposited energetics. This research indicates that aerial combustion products analysis can provide a valuable supplement to energetics deposition data in the LCEA process but is insufficient alone to account for total residual energetics. This study demonstrates a need for the environmental testing of munitions to quantify energetics residues from live-fire training.
更多
查看译文
关键词
Life Cycle Environmental Assessment,Munitions,Energetics,Detonation residues,Combustion products,Emission factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要