Highly Efficient Site-Specific Mutagenesis in Malaria Mosquitoes Using CRISPR.

G3 (Bethesda, Md.)(2018)

引用 34|浏览0
暂无评分
摘要
Anopheles mosquitoes transmit at least 200 million annual malaria infections worldwide. Despite considerable genomic resources, mechanistic understanding of biological processes in Anopheles has been hampered by a lack of tools for reverse genetics. Here, we report successful application of the CRISPR/Cas9 system for highly efficient, site-specific mutagenesis in the diverse malaria vectors Anopheles albimanus, A. coluzzii, and A. funestus. When guide RNAs (gRNAs) and Cas9 protein are injected at high concentration, germline mutations are common and usually biallelic, allowing for the rapid creation of stable mutant lines for reverse genetic analysis. Our protocol should enable researchers to dissect the molecular and cellular basis of anopheline traits critical to successful disease transmission, potentially exposing new targets for malaria control.
更多
查看译文
关键词
Anopheles,gene drive,reverse genetics,transgenics,CRISPR,Cas9
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要