Gluten peptides drive healthy and celiac monocytes toward an M2-like polarization.

The Journal of Nutritional Biochemistry(2018)

引用 17|浏览0
暂无评分
摘要
Celiac disease (CD) is an immune-mediated enteropathy triggered by ingested gluten in genetically susceptible individuals and sustained by both adaptive and innate immune responses. Recent studies in murine macrophages demonstrated that the activation of arginase (ARG) metabolic pathway by gluten peptides contributes to the modulation of intestinal permeability in vitro. Here we characterize the effects of gluten on arginine metabolism and cell polarization in human monocytes from both healthy and CD subjects; both a simplified enzymatic digestion of gliadin and a physiological digestion of whole wheat have been tested. Results indicate that gluten digests induce the onset of an M2-like phenotype in activated macrophages; more precisely, both isoforms of arginase, ARG1 and ARG2, are induced likely due to the inhibition of mTOR and the consequent induction of C/EBPβ transcription factor. These effects are independent from the origin of gluten as well as from the digestive protocol employed; moreover, no statistical difference can be evidenced between healthy and CD patients, excluding a diverse predisposition of CD monocytes to gluten-triggered polarization with respect to healthy immune cells. Overall, the present findings sustain a role for arginase pathway in the immune response elicited by human monocytes toward ingested gluten that, hence, deserves particular attention when addressing the pathogenesis of CD.
更多
查看译文
关键词
Celiac disease,Gluten,Wheat,Innate immune system,Arginase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要