Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification

ACSAC '17: Proceedings of the 33rd Annual Computer Security Applications Conference(2017)

引用 234|浏览400
暂无评分
摘要
Deep neural networks (DNNs) have transformed several artificial intelligence research areas including computer vision, speech recognition, and natural language processing. However, recent studies demonstrated that DNNs are vulnerable to adversarial manipulations at testing time. Specifically, suppose we have a testing example, whose label can be correctly predicted by a DNN classifier. An attacker can add a small carefully crafted noise to the testing example such that the DNN classifier predicts an incorrect label, where the crafted testing example is called adversarial example. Such attacks are called evasion attacks. Evasion attacks are one of the biggest challenges for deploying DNNs in safety and security critical applications such as self-driving cars. In this work, we develop new methods to defend against evasion attacks. Our key observation is that adversarial examples are close to the classification boundary. Therefore, we propose region-based classification to be robust to adversarial examples. For a benign/adversarial testing example, we ensemble information in a hypercube centered at the example to predict its label. In contrast, traditional classifiers are point-based classification, i.e., given a testing example, the classifier predicts its label based on the testing example alone. Our evaluation results on MNIST and CIFAR-10 datasets demonstrate that our region-based classification can significantly mitigate evasion attacks without sacrificing classification accuracy on benign examples. Specifically, our region-based classification achieves the same classification accuracy on testing benign examples as point-based classification, but our region-based classification is significantly more robust than point-based classification to various evasion attacks.
更多
查看译文
关键词
adversarial machine learning,evasion attacks,region-based classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要