Monitoring of cardiac output and lung ventilation by Electrical Impedance Tomography in a porcine model of acute lung injury

2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(2017)

引用 0|浏览15
暂无评分
摘要
Adequate medical treatment of the Acute Respiratory Distress Syndrome is still challenging since patient-individual aspects have to be taken into account. Lung protective ventilation and hemodynamic stability have always been two of the most crucial aims of intensive care therapy. For both aspects, a continuous - preferably non-invasive - monitoring is desirable that is available at the bedside. Unfortunately, there is no technique clinically established yet, that provides both measurement of cardiac stroke volume and ventilation dynamics in real-time. Electrical Impedance Tomography (EIT) is a promising technique to close this gap. The aim of the study was to investigate if stroke volume can be estimated by a self-developed software using EIT-based image analysis. In addition, two EIT-derived parameters, namely Global Inhomogeneity Index (GII) and Impedance Ratio (IR), were calculated to evaluate homogeneity of air distribution. Experimental acute lung injury (ALI) was provoked in seven female pigs (German Landrace) by lipopolysaccharide (LPS). All animals suffered from experimental ALI 3 to 4 hours after LPS infusion. At defined time points, respiratory and hemodynamic parameters, blood gas analyses and EIT-recordings were performed. Eight hours after ALI, animals were euthanized. Stroke volume, derived from pulmonary artery catheter (PAC), decreased continuously up to four hours after ALI. Then, stroke volume increased slightly. Stroke volume, derived from the self-developed tool, showed the same characteristics (p=0.047, r = 0.365). In addition to the GII and IR individually, both classified scores showed a high correlation with the Horowitz Index, defined as p a O 2 /FiO 2 . To conclude, EIT-derived measures enabled a reliable estimation of cardiac stroke volume and regional distribution of ventilation.
更多
查看译文
关键词
Acute Lung Injury,Animals,Electric Impedance,Female,Respiration, Artificial,Swine,Tomography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要