Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes.

Journal of Genetics and Genomics(2017)

引用 10|浏览13
暂无评分
摘要
Recently, engineered minichromosomes have been produced using a telomere-mediated truncation technique in some plants. However, the study on transferring genes to minichromosomes is very limited. Here, telomere-mediated truncation was successfully performed in common wheat (Triticum aestivum) to generate stable truncated chromosomes accompanied by a relatively high frequency of chromosomal rearrangements. After the cross between transgenic parents, a promoter-less DsRed gene in a chromosome from one parent was transferred to another chromosome from the other parent at the site behind a maize ubiquitin promoter via the Cre/lox system. DsRed transcripts and red fluorescent proteins were detected in the recombinant plants. In one such seedling, transgenic signals were detected at the centric terminus of chromosome 4D and the distal terminus of chromosome 3A. Clear translocations could be detected at the transgenic loci of these two chromosomes. Intriguingly, signals of centric-specific sequences were co-localized with the translocated D-group chromosomal segment in the terminal region of chromosome 3A. Our results indicate that the Cre/lox system induces the gene swapping to the target chromosome and non-homologous chromosomal recombination simultaneously. These approaches could offer a platform to transfer large DNA fragments or even terminal chromosomal segments to other chromosomes of the natural genome.
更多
查看译文
关键词
Telomere-mediated truncation,Engineered chromosome,Cre/lox system,Chromosomal recombination,Chromosome translocation,Triticum aestivum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要