Evaluation of the Pharmacodynamic Effects of the Potassium Binder RDX7675 in Mice.

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS(2018)

引用 6|浏览6
暂无评分
摘要
Introduction: Hyperkalemia is a common complication in patients with heart failure or chronic kidney disease, particularly those who are taking inhibitors of the renin-angiotensin-aldosterone system. RDX7675, the calcium salt of a reengineered polystyrene sulfonate-based resin, is a potassium binder that is being investigated as a novel treatment for hyperkalemia. This study evaluated the pharmacodynamic effects of RDX7675 in mice, compared to 2 current treatments, sodium polystyrene sulfonate (SPS) and patiromer. Methods: Seven groups of 8 male CD-1 mice were given either standard chow (controls) or standard chow containing 4.0% or 6.6% active moiety of RDX7675, patiromer, or SPS for 72 hours. Stool and urine were collected over the final 24 hours of treatment for ion excretion analyses. Results: RDX7675 increased stool potassium (mean 24-hour excretion: 4.0%, 9.19 mg; 6.6%, 18.11 mg; both P < .0001) compared with controls (4.47 mg) and decreased urinary potassium (mean 24-hour excretion: 4.0%, 12.05 mg, P < .001; 6.6%, 6.68 mg, P < .0001; vs controls, 20.38 mg). The potassium-binding capacity of RDX7675 (stool potassium/gram of resin: 4.0%, 1.14 mEq/g; 6.6%, 1.32 mEq/g) was greater (all P < .0001) than for patiromer (4.0%, 0.63 mEq/g; 6.6%, 0.48 mEq/g) or SPS (4.0%, 0.73 mEq/g; 6.6% 0.55 mEq/g). RDX7675 and patiromer decreased urinary sodium (mean 24-hour excretion: 0.07-1.38 mg; all P < .001) compared to controls (5.01 mg). In contrast, SPS increased urinary sodium excretion (4.0%, 13.31 mg; 6.6%, 17.60 mg; both P < .0001) compared to controls. Conclusions: RDX7675 reduced intestinal potassium absorption and had a greater potassium-binding capacity than patiromer or SPS in mice. The calcium-based resins RDX7675 and patiromer reduced intestinal sodium absorption, unlike sodium-based SPS. These results support further studies in humans to confirm the potential of RDX7675 for the treatment of patients with hyperkalemia.
更多
查看译文
关键词
hyperkalemia,patiromer,potassium,RDX7675,sodium polystyrene sulfonate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要