On/off switchable electronic conduction in intercalated metal-organic frameworks

Science Advances(2017)

引用 47|浏览2
暂无评分
摘要
The electrical properties of metal-organic frameworks (MOF) have attracted attention for MOF as electronic materials. We report on/off switchable electronic conduction behavior with thermal responsiveness in intercalated MOF (iMOF) with layered structure, 2,6-naphthalene dicarboxylate dilithium, which was previously reported as a reversible Li-intercalation electrode material. The I - V response of the intercalated sample, which was prepared using a chemically reductive lithiation agent, exhibits current flow with sufficiently high electronic conductivity, even though it displays insulating characteristics in the pristine state. Calculations of band structure and electron hopping conduction indicate that electronic conduction occurs in the two-dimensional π-stacking naphthalene layers when the band gap is decreased to 0.99 eV and because of the formation of an anisotropic electron hopping conduction pathway by Li intercalation. The structure exhibiting electronic conductivity remains stable up to 200°C and reverts to an insulating structure, without collapsing, at 400°C, offering the potential for a shutdown switch for battery safety during thermal runaway or for heat-responsive on/off switching electronic devices.
更多
查看译文
关键词
switchable electronic conduction,metal-organic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要