BADFET: Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection.

WOOT(2017)

引用 78|浏览21
暂无评分
摘要
Numerous Electromagnetic Fault Injection (EMFI) techniques have been used to attack FPGAs, ASICs, cryptographic devices, and microcontrollers. Unlike other classes of fault injection techniques, EMFI-based attacks can, in theory, be carried out non-invasively without requiring physical contact with the victim device. Prior research has demonstrated the viability of EMFIbased attacks against relatively simple, low-frequency, synchronous digital circuits. However, theoretical and practical constraints limit the range, degree of isolation and temporal resolution of existing EM injector hardware. These limitations, combined with the trend towards faster, denser and more complex digital circuits has made the application of many previously proposed EMFI techniques infeasible against modern computers and embedded devices. This paper makes two contributions. First, we present a novel method of leveraging controlled electromagnetic pulses to attack modern computers using secondorder effects of induced faults across multiple components of the target computer. Second, we present the design and implementation of BADFET: a low-cost, highperformance pulsed EMFI platform. We aim to share BADFET with the research community in order to democratize future EMFI research. Using these two contributions, we present a reliable and effective attack against a widely used TrustZone-based secure boot implementation on a multi-core 1Ghz+ ARM embedded system. Additionally, we disclose two novel vulnerabilities within a widely used implementation of TrustZone SMC in Appendix A.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要