Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo.

ICML(2017)

引用 121|浏览57
暂无评分
摘要
Deep latent Gaussian models are powerful and popular probabilistic models of high-dimensional data. These models are almost always fit using variational expectation-maximization, an approximation to true maximum-marginal-likelihood estimation. In this paper, we propose a different approach: rather than use a variational approximation (which produces biased gradient signals), we use Markov chain Monte Carlo (MCMC, which allows us to trade bias for computation). We find that our MCMC-based approach has several advantages: it yields higher held-out likelihoods, produces sharper images, and does not suffer from the variational overpruning effect. MCMC’s additional computational overhead proves to be significant, but not prohibitive.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要