A High-Throughput FPGA Architecture for Joint Source and Channel Decoding.

IEEE ACCESS(2017)

引用 7|浏览24
暂无评分
摘要
In the wireless transmission of multimedia information, the achievable transmission throughput and latency may be limited by the processing throughput and latency associated with source and channel coding. Ultra-high throughput and ultra-low latency processing of source and channel coding are required by the emerging new video transmission applications, such as the first-person remote control of unmanned vehicles. The recently proposed unary error correction (UEC) code facilitates the joint source and channel coding (JSCC) of video information at transmission throughputs that approach the capacity of the wireless channel. In this paper, we propose the first hardware implementation of the UEC code that achieves the high processing throughputs as well as ultra-low processing latencies required. This is achieved by extending the application of the recently proposed fully parallel turbo decoder (FPTD) from pure stand-alone channel coding to JSCC. This paper also proposes several novel improvements to the FP ID, in order to increase its hardware efficiency and supported frame length. We demonstrate the application of these improvements to both the long term evolution turbo code and the UEC code. We synthesize the proposed fully parallel design on a mid-range field programmable gate array, achieving a throughput of 450 Mbps, as well as a factor of 2.4 hardware efficiency improvement over previous implementations of the FPTD.
更多
查看译文
关键词
Turbo codes,combined source-channel coding,channel coding,decoding,field programmable gate arrays,throughput,wireless communication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要