What is the P value of Siberian soils?

F. Brédoire, M. R. Bakker,L. Augusto, P. A. Barsukov,D. Derrien, P. Nikitich, O. Rusalimova,B. Zeller,D. L. Achat

Biogeosciences Discussions(2015)

引用 1|浏览34
暂无评分
摘要
Abstract. Climate change is particularly strong in Northern Eurasia and substantial ecological changes are expected in this wide region. The reshaping and the migration northward of bioclimatic zones may offer opportunities for agriculture development in western and central Siberia. However, the bioclimatic vegetation models currently employed for projections still do not consider soil fertility whereas it is highly critical for plant growth. In the present study, we surveyed the phosphorus (P) status in the south-west of Siberia where soils are developed on loess parent material. We selected six sites differing by pedoclimate conditions and sampled the soil at different depths down to one meter in aspen (Populus tremula L.) forest as well as in grassland areas. The P status was assessed by conventional methods and by isotope dilution kinetics. We found that P concentrations and stocks, as well as their distribution through the soil profile, were rather homogeneous at the studied regional scale, although there were some differences among sites (particularly in organic P). The young age of the soils, together with slow kinetics of soil forming processes, have probably not yet conducted to a sufficiently wide range of soil physico-chemical conditions to observe more diverging P status. The comparison of our dataset to similar vegetation contexts on the global scale revealed that the soils of south-western Siberia, and more generally of Northern Eurasia, has often (very) high levels of total, organic and inorganic P. The amount of plant-available P in topsoils, estimated by the isotopically exchangeable phosphate ions, was not particularly high, but intermediate at the global scale. However, large stocks of plant-available P are stored in subsurface layers which have currently low fine root exploration intensities. These results suggest that the P resource is unlikely to constrain vegetation growth and agriculture development in the present and near future conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要