Effect of tolbutamide on TEA-induced postsynaptic zinc signals at hippocampal mossy fiber-CA3 synapses.

CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY(2017)

引用 3|浏览6
暂无评分
摘要
The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3-CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is considered that zinc has a neuromodulatory role at the mossy fiber synapses, which can, at least in part, be due to the activation of presynaptic ATP-dependent potassium (KATP) channels. The aim of this work was to study properties of TEA-induced zinc signals, detected at the mossy fiber region, using the permeant form of the zinc indicator Newport Green. The application of TEA caused a depression of those signals that was partially blocked by the KATP channel inhibitor tolbutamide. After the removal of TEA, the signals usually increased to a level above baseline. These results are in agreement with the idea that intense zinc release during strong synaptic events triggers a negative feedback action. The zinc depression, caused by the LTP-evoking chemical stimulation, turns into potentiation after TEA washout, suggesting the existence of a correspondence between the observed zinc potentiation and TEA-evoked mossy fiber LTP.
更多
查看译文
关键词
tetraethylammonium,hippocampus,voltage-dependent calcium channel,CA3,mossy fiber,long-term potentiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要