GeNICE: A Novel Framework for Gene Network Inference by Clustering, Exhaustive Search, and Multivariate Analysis.

JOURNAL OF COMPUTATIONAL BIOLOGY(2017)

引用 2|浏览4
暂无评分
摘要
Gene network (GN) inference from temporal gene expression data is a crucial and challenging problem in systems biology. Expression data sets usually consist of dozens of temporal samples, while networks consist of thousands of genes, thus rendering many inference methods unfeasible in practice. To improve the scalability of GN inference methods, we propose a novel framework called GeNICE, based on probabilistic GNs; the main novelty is the introduction of a clustering procedure to group genes with related expression profiles and to provide an approximate solution with reduced computational complexity. We use the defined clusters to perform an exhaustive search to retrieve the best predictor gene subsets for each target gene, according to multivariate criterion functions. GeNICE greatly reduces the search space because predictor candidates are restricted to one gene per cluster. Finally, a multivariate analysis is performed for each defined predictor subset to retrieve minimal subsets and to simplify the network. In our experiments with in silico generated data sets, GeNICE achieved substantial computational time reduction when compared to solutions without the clustering step, while preserving the gene expression prediction accuracy even when the number of clusters is small (about 50) relative to the number of genes (order of thousands). For a Plasmodium falciparum microarray data set, the prediction accuracy achieved by GeNICE was roughly 97%, while the respective topologies involving glycolytic and apicoplast seed genes had a very large intramodularity, very small interconnection between modules, and some module hub genes, reflecting small-world and scale-free topological properties, as expected.
更多
查看译文
关键词
clustering,features selection,gene network inference,intrinsically multivariate prediction,probabilistic gene network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要