Multi-Label Segmentation via Residual-Driven Adaptive Regularization.

arXiv: Computer Vision and Pattern Recognition(2017)

引用 24|浏览13
暂无评分
摘要
We present a variational multi-label segmentation algorithm based on a robust Huber loss for both the data and the regularizer, minimized within a convex optimization framework. We introduce a novel constraint on the common areas, to bias the solution towards mutually exclusive regions. We also propose a regularization scheme that is adapted to the spatial statistics of the residual at each iteration, resulting in a varying degree of regularization being applied as the algorithm proceeds: the effect of the regularizer is strongest at initialization, and wanes as the solution increasingly fits the data. This minimizes the bias induced by the regularizer at convergence. We design an efficient convex optimization algorithm based on the alternating direction method of multipliers using the equivalent relation between the Huber function and the proximal operator of the one-norm. We empirically validate our proposed algorithm on synthetic and real images and offer an information-theoretic derivation of the cost-function that highlights the modeling choices made.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要