Firmament: Fast, Centralized Cluster Scheduling At Scale

OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation(2016)

引用 278|浏览180
暂无评分
摘要
Centralized datacenter schedulers can make high-quality placement decisions when scheduling tasks in a cluster. Today, however, high-quality placements come at the cost of high latency at scale, which degrades response time for interactive tasks and reduces cluster utilization.This paper describes Firmament, a centralized scheduler that scales to over ten thousand machines at sub second placement latency even though it continuously reschedules all tasks via a min-cost max-flow (MCMF) optimization. Firmament achieves low latency by using multiple MCMF algorithms, by solving the problem incrementally, and via problem-specific optimizations.Experiments with a Google workload trace from a 12,500-machine cluster show that Firmament improves placement latency by 20 x over Quincy [22], a prior centralized scheduler using the same MCMF optimization. Moreover, even though Firmament is centralized, it matches the placement latency of distributed schedulers for workloads of short tasks. Finally, Firmament exceeds the placement quality of four widely-used centralized and distributed schedulers on a real-world cluster, and hence improves batch task response time by 6 x.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要