Reins to the Cloud: Compromising Cloud Systems via the Data Plane

arXiv: Networking and Internet Architecture(2016)

引用 26|浏览31
暂无评分
摘要
Virtual switches have become popular among cloud operating systems to interconnect virtual machines in a more flexible manner. However, this paper demonstrates that virtual switches introduce new attack surfaces in cloud setups, whose effects can be disastrous. Our analysis shows that these vulnerabilities are caused by: (1) inappropriate security assumptions (privileged virtual switch execution in kernel and user space), (2) the logical centralization of such networks (e.g., OpenStack or SDN), (3) the presence of bi-directional communication channels between data plane systems and the centralized controller, and (4) non-standard protocol parsers. Our work highlights the need to accommodate the data plane(s) in our threat models. In particular, it forces us to revisit today's assumption that the data plane can only be compromised by a sophisticated attacker: we show that compromising the data plane of modern computer networks can actually be performed by a very simple attacker with limited resources only and at low cost (i.e., at the cost of renting a virtual machine in the Cloud). As a case study, we fuzzed only 2% of the code-base of a production quality virtual switch's packet processor (namely OvS), identifying serious vulnerabilities leading to unauthenticated remote code execution. In particular, we present the "rein worm" which allows us to fully compromise test-setups in less than 100 seconds. We also evaluate the performance overhead of existing mitigations such as ASLR, PIEs, and unconditional stack canaries on OvS. We find that while applying these countermeasures in kernel-space incurs a significant overhead, in user-space the performance overhead is negligible.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要