Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar.

Signal Processing(2017)

引用 62|浏览5
暂无评分
摘要
Adapting the space-time adaptive processing (STAP) filter with finite number of secondary data is of particular interest for airborne phased-array radar clutter suppression. Sparse representation (SR) technique has been introduced into the STAP framework for the benefit of drastically reduced training requirement. However, most SR algorithms need the fine tuning of one or more user parameters, which affect the final results significantly. Sparse Bayesian learning (SBL) and multiple sparse Bayesian learning (M-SBL) are robust and user parameter free approaches, but they converge quite slowly. To remedy this limitation, a fast converging SBL (FCSBL) approach is proposed based on Bayesian inference along with a simple approximation term, then, it is extended to the multiple measurement vector case, and the resulting approach is termed as M-FCSBL. To improve the performance of STAP in finite secondary data situation, the M-FCSBL is utilized to estimate the clutter plus noise covariance matrix (CCM) from a limited number of secondary data, and then the resulting CCM is adopted to devise the STAP filter and suppress the clutter. Numerical experiments with both simulated and Mountain-Top data are carried out. It is shown that the proposed algorithm has superior clutter suppression performance in finite secondary data situation. We study the problem of clutter suppression in STAP with finite training samples.Fast converging sparse Bayesian learning approaches are derived.A novel STAP algorithm named as M-FCSBL-STAP is proposed.The M-FCSBL-STAP has superior performance in low training support situation.
更多
查看译文
关键词
Space-time adaptive processing,Clutter suppression,Sparse representation,Bayesian inference
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要