Bifurcation in the Ultrafast Dynamics of the Photoactive Yellow Proteins from Leptospira biflexa and Halorhodospira halophila.

BIOCHEMISTRY(2016)

引用 9|浏览7
暂无评分
摘要
We explored the photoisomerization mechanisms in novel homologues of photoactive yellow protein (PYP) from Leptospira biflexa (Lbif) to identify conserved features and functional diversity in the primary photochemistry of this family of photoreceptors. In close agreement with the prototypical PYP from Halorhodospira halophila (Hhal), we observe excited-state absorbance near 375 nm and stimulated emission near 500 nm, with triphasic excited-state decay. While the excited-state decay for Lbif PYP is the slowest among those of known PYPs due to the redistribution of the amplitudes of the three decay components, the quantum yield for productive photocycle entry is very similar to that of Hhal PYP. Pro68 is highly conserved in PYPs and is important for the high photochemical quantum yield in Hhal PIT, but this residue is Ile in wild-type Lbif PIT. The level of photoproduct formation is slightly increased in I68P Lbif PYP, indicating that this residue regulates the photochemical quantum yield in the entire PIT family. Lbif PYP also exhibited a blue-shifted photoproduct previously undiscovered in ultrafast studies of PYP, which we have named pUV. We posit that pUV is a detour in the PIT photocycle with a twisted protonated pCAH configuration. Cryokinetic experiments with Hhal PIT confirmed the presence of pUV, but the population of this state in room-temperature ultrafast experiments is very small. These results resolve the long-standing inconsistency in the literature regarding the existence of a bifurcation in the room-temperature photocycle of PYP.
更多
查看译文
关键词
photoactive yellow proteins,ultrafast dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要