Recent advances in animal and human pluripotent stem cell modeling of cardiac laminopathy

Stem cell research & therapy(2016)

引用 9|浏览38
暂无评分
摘要
Laminopathy is a disease closely related to deficiency of the nuclear matrix protein lamin A/C or failure in prelamin A processing, and leads to accumulation of the misfold protein causing progeria. The resultant disrupted lamin function is highly associated with abnormal nuclear architecture, cell senescence, apoptosis, and unstable genome integrity. To date, the effects of loss in nuclear integrity on the susceptible organ, striated muscle, have been commonly associated with muscular dystrophy, dilated cardiac myopathy (DCM), and conduction defeats, but have not been studied intensively. In this review, we aim to summarize recent breakthroughs in an in vivo laminopathy model and in vitro study using patient-specific human induced pluripotent stem cells (iPSCs) that reproduce the pathophysiological phenotype for further drug screening. We describe several in-vivo transgenic mouse models to elucidate the effects of Lmna H222P, N195K mutations, and LMNA knockout on cardiac function, in terms of hemodynamic and electrical signal propagation; certain strategies targeted on stress-related MAPK are mentioned. We will also discuss human iPSC cardiomyocytes serving as a platform to reveal the underlying mechanisms, such as the altered mechanical sensation in electrical coupling of the heart conduction system and ion channel alternation in relation to altered nuclear architecture, and furthermore to enable screening of drugs that can attenuate this cardiac premature aging phenotype by inhibition of prelamin misfolding and oxidative stress, and also enhancement of autophagy protein clearance and cardiac-protective microRNA.
更多
查看译文
关键词
Cardiovascular diseases,Lamin A/C,Stem cell model,Transgenic mice model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要