Loss of SLCO1B3 drives taxane resistance in prostate cancer

BRITISH JOURNAL OF CANCER(2016)

引用 47|浏览32
暂无评分
摘要
Background: Both taxanes, docetaxel and cabazitaxel, are effective treatments for metastatic castration-resistant prostate cancer (mCRPC). However, resistance to taxanes is common. Our objective was to investigate mechanisms of taxane resistance in prostate cancer. Methods: Two docetaxel-resistant patient-derived xenografts (PDXs) of CRPC were established (PC339-DOC and PC346C-DOC) in male athymic nude mice by frequent intraperitoneal administrations of docetaxel. Next-generation sequencing was performed on PDX tissue pre- and post-docetaxel resistance and gene expression profiles were compared. [ 14 C]-docetaxel and [ 14 C]-cabazitaxel uptake assays in vitro and cytotoxicity assays were performed to validate direct involvement of transporter genes in taxane sensitivity. Results: Organic anion-transporting polypeptide (SLCO1B3), an influx transporter of docetaxel, was significantly downregulated in PC346C-DOC tumours. In accordance with this finding, intratumoural concentrations of docetaxel and cabazitaxel were significantly decreased in PC346C-DOC as compared with levels in chemotherapy-naive PC346C tumours. In addition, silencing of SLCO1B3 in chemo-naive PC346C resulted in a two-fold decrease in intracellular concentrations of both taxanes. Overexpression of SLCO1B3 showed higher sensitivity to docetaxel and cabazitaxel. Conclusions: The SLCO1B3 determines intracellular concentrations of docetaxel and cabazitaxel and consequently influences taxane efficacy. Loss of the drug transporter SLCO1B3 may drive taxane resistance in prostate cancer.
更多
查看译文
关键词
cabazitaxel,docetaxel resistance,drug transporters,mCRPC,patient-derived xenografts,prostate cancer,SLCO1B3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要