Phosphorothioate analogs of P1,P3-di(nucleosid-5'-yl) triphosphates: Synthesis, assignment of the absolute configuration at P-atoms and P-stereodependent recognition by Fhit hydrolase.

Bioorganic & Medicinal Chemistry(2016)

引用 2|浏览1
暂无评分
摘要
Di(nucleosid-5′-yl) polyphosphates (NPnN) are involved in various biological processes, and constitute signaling molecules in the intermolecular purinergic systems. They exert tumor suppression function and are substrates for specific hydrolases (e.g., HIT proteins). Their structural analogs may serve as molecular probes and potential therapeutic agents. Three P1,P3-bis-thio-analogs of symmetrical di(nucleosid-5′-yl) triphosphates (NP3N) bearing adenosine, guanosine or ribavirin residues (6, 7 and 8, respectively), were obtained by direct condensation of corresponding base-protected nucleoside-5′-O-(2-thio-1,3,2-oxathiaphospholane) with anhydrous phosphoric acid in the presence of DBU. Deprotected products 6 and 8 were separated into individual P-diastereoisomers, whereas 7 was partially separated to yield diastereomerically enriched fractions. The absolute configuration at P-stereogenic centers in the separated diastereoisomers was assigned by RP-HPLC analysis of the products of enzymatic digestion with snake venom phosphodiesterase. The Fhit-assisted hydrolysis rates for 6 and 7 are by 2–3 orders of magnitude lower than that for the reference AP3A, and depend on the configuration of the stereogenic phosphorus atoms, while 8 occurred to be resistant to this cleavage.
更多
查看译文
关键词
AP3A,Polyphosphate,Oxathiaphospholane methodology,Absolute configuration,Fhit,P-chirality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要