Improved Vegetation Profiles with GOCI Imagery Using Optimized BRDF Composite.

JOURNAL OF SENSORS(2016)

引用 6|浏览1
暂无评分
摘要
The purpose of this study was to optimize a composite method for the Geostationary Ocean Color Imager (GOCI), which is the first geostationary ocean color sensor in the world. Before interpreting the sensitivity of each composite with ground measurements, we evaluated the accuracy of bidirectional reflectance distribution function (BRDF) performance by comparing modeled surface reflectance from BRDF simulation with GOCI-measured surface reflectance according to composite period. The root mean square error values for modeled and measured surface reflectance showed reasonable accuracy for all of composite days since each BRDF composite period includes at least seven cloud-free angular sampling for all BRDF performances. Also, GOCI-BRDF-adjusted NDVIs with four different composite periods were compared with field-observation NDVI and we interpreted the sensitivity of temporal crop dynamics of GOCI-BRDF-adjusted NDVIs. The results showed that vegetation index seasonal profiles appeared similar to vegetation growth curves in both field observations from crop scans and GOCI normalized difference vegetation index (NDVI) data. Finally, we showed that a 12-day composite period was optimal in terms of BRDF simulation accuracy, surface coverage, and real-time sensitivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要