First-order Methods for Geodesically Convex Optimization.

COLT(2016)

引用 214|浏览85
暂无评分
摘要
Geodesic convexity generalizes the notion of (vector space) convexity to nonlinear metric spaces. But unlike convex optimization, geodesically convex (g-convex) optimization is much less developed. In this paper we contribute to the understanding of g-convex optimization by developing iteration complexity analysis for several first-order algorithms on Hadamard manifolds. Specifically, we prove upper bounds for the global complexity of deterministic and stochastic (sub)gradient methods for optimizing smooth and nonsmooth g-convex functions, both with and without strong g-convexity. Our analysis also reveals how the manifold geometry, especially sectional curvature, impacts convergence rates. To the best of our knowledge, our work is the first to provide global complexity analysis for first-order algorithms for general g-convex optimization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要