Learning Halfspaces and Neural Networks with Random Initialization

CoRR(2015)

引用 39|浏览51
暂无评分
摘要
We study non-convex empirical risk minimization for learning halfspaces and neural networks. For loss functions that are $L$-Lipschitz continuous, we present algorithms to learn halfspaces and multi-layer neural networks that achieve arbitrarily small excess risk $\epsilon>0$. The time complexity is polynomial in the input dimension $d$ and the sample size $n$, but exponential in the quantity $(L/\epsilon^2)\log(L/\epsilon)$. These algorithms run multiple rounds of random initialization followed by arbitrary optimization steps. We further show that if the data is separable by some neural network with constant margin $\gamma>0$, then there is a polynomial-time algorithm for learning a neural network that separates the training data with margin $\Omega(\gamma)$. As a consequence, the algorithm achieves arbitrary generalization error $\epsilon>0$ with ${\rm poly}(d,1/\epsilon)$ sample and time complexity. We establish the same learnability result when the labels are randomly flipped with probability $\eta<1/2$.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要